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Modelling credit risk with scarce default data: on the
suitability of cooperative bootstrapped strategies for
small low-default portfolios
Raquel Florez-Lopez* and Juan Manuel Ramon-Jeronimo
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Credit risk models are commonly based on large internal data sets to produce reliable estimates of the probability of
default (PD) that should be validated with time. However, in the real world, a substantial portion of the exposures is
included in low-default portfolios (LDPs) in which the number of defaulted loans is usually much lower than the
number of non-default observations. Modelling of these imbalanced data sets is particularly problematic with small
portfolios in which the absence of information increases the specification error. Sovereigns, banks, or specialised
retail exposures are recent examples of post-crisis portfolios with insufficient data for PD estimates, which require
specific tools for risk quantification and validation. This paper explores the suitability of cooperative strategies for
managing such scarce LDPs. In addition to the use of statistical and machine-learning classifiers, this paper
explores the suitability of cooperative models and bootstrapping strategies for default prediction and multi-grade
PD setting using two real-world credit consumer data sets. The performance is assessed in terms of out-of-sample
and out-of-time discriminatory power, PD calibration, and stability. The results indicate that combinational
approaches based on correlation-adjusted strategies are promising techniques for managing sparse LDPs and
providing accurate and well-calibrated credit risk estimates.
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1. Introduction

Heavy losses associated with the recent world financial crisis
have raised interest in the models used to manage credit risks
and have demanded new solutions to address the deteriorated
portfolios that were previously considered as low-risk. Credit-
scoring models (Thomas et al, 2001), which are based on
classification of credit risk applicants into two classes (good and
bad payers), must be adapted to manage portfolios that are
characterised by both a reduced number of observations and a
still limited but largely unexpected number of defaults.
Under the pre-crisis Basel II regulation, banks previously

developed internal scoring models to estimate the probability of
default (PD) by considering large historical data sets (BCBS,
2004, paragraph 449). The estimated PD should be regularly
compared with actual default rates to demonstrate that the
occurrences are within the expected range for each grade
(BCBS, 2004). A sufficient number of observations should be
used to guarantee meaningful PD quantification and validation
at each grade level. These requirements made it difficult to
extend internal credit risk modelling to portfolios with limited

default experience (so-called ‘low-default portfolios’ or LDPs)
(BCBS, 2005a).
The LDPs include different categories of portfolios with

limited default experience (Benjamin et al, 2006), including
portfolios that historically have experienced a low number of
defaults and are generally considered as low-risk (eg, banks,
sovereigns, insurers, highly rated corporations), portfolios with a
low number of counterparties (eg, train operating companies,
niche markets, public–private partnerships), portfolios with a lack
of historical data (eg, a new entrant into a market), and portfolios
that may have not incurred recent losses but that large historical
experience suggest a greater PD than is captured in recent data
(eg, retail mortgages in a number of jurisdictions). Although
limited attempts have been made to obtain robust PD estimates in
the presence of LDPs, the empirical work is constrained to
portfolios with few recent losses but with large historical
experience (Sabato, 2006; Van der Burgt, 2008). The presence
of such large LDPs has permitted to address them using simple
techniques based on assumptions on PD distributions, including
confidence intervals (Forrest, 2005; FSA, 2005; Pluto and
Tasche, 2005, 2006; Schuermann and Hanson, 2005), a priori
PD averages (Schuermann and Hanson, 2005; Benjamin et al,
2006) or ad hoc prior information (Löffler et al, 2004).
However, the world financial tsunami initiated in 2007 has

shown that the nature of LDPs should be revisited, so that most
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robust and sophisticated techniques must be developed to
prevent major financial losses (BCBS, 2010). Examples such
as the European sovereign debt crisis (Beirne and Fratzscher,
2013), the failure and recapitalisation problems of the OECD
banks (Brei et al, 2013), the bankruptcies of oligopolistic
firms and government agencies (Huang and Lee, 2013), and
the increased default observed in specialised retail lending
(Van der Burgt, 2008) have demonstrated that the nature of
LDPs has noticeably changed in the post-crisis scenario, with
major losses occurring as a result of small portfolios, a lack
of historical default data, and a reduced number of counter-
parties (scarce LDPs).
The presence of scarce LDPs underscores two problems for

credit risk modelling: the class imbalance problem that under-
lies the LDPs (Brown and Mues, 2012) and the specification
error bias that emerges for small data sets (Beleites et al, 2005).
Additionally, data scarcity precludes the use of models based
on PD distributions to estimate the PD. Literature has largely
forgotten the implications and particular characteristics of
scarce defaults in small data sets, even if modelling of scarce
retail LDPs is particularly critical because the PD must be based
on quantitative data and statistical modelling under international
regulations (BCBS, 2004, 2010).
The aim of this paper is to conduct a comparative study of

cooperative models that may offer potential advantages for
default modelling in the presence of scarce LDPs. Our approach
provides evidence on recent concerns in the credit risk area,
which remained unsolved in the literature: the effect of the
actual number of observations on the LDP models (Brown and
Mues, 2012), the potential for an ensemble of multiple
techniques to examine imbalanced data sets (Brown and Mues,
2012), and the usefulness of bootstrapping approaches to obtain
accurate and stable PD estimates over classical undersampling
and oversampling approaches (Marques et al, 2013).
Cooperative models are constructed by combining individual

classifiers such as linear discriminant analysis (LDA), logistic
regression (LR), support vector machines (SVM), nearest-
neighbour classifiers (k-nn), and supervised artificial neural
networks (ANN). The models are assessed in terms of their
discriminatory power using the area under the receiver operat-
ing characteristic curve (AUC), Type-I and Type-II errors, and
the DeLong and Friedman test for analysis of the AUC
differences between classifiers. In addition, we evaluate the
usefulness of individual and cooperative classifiers for generat-
ing well-calibrated out-of-time PD estimates. Two real-life
credit-scoring data sets were used in the empirical research.
The initial populations of 1000 and 125 instances were
drastically cut to generate experimental samples of 100 and 25
exposures, respectively, maintaining the out-of-sample data for
validation purposes. A moderated imbalance ratio was consid-
ered (70/30) in line with the peculiarities of post-crisis LDPs.
The paper is structured as follows. Section 2 provides a

critical review of the pre-crisis proposals for LDP management
and deepens the topics of class imbalance and specification
error as characteristics of the post-crisis scarce LDPs.

Methodological issues are discussed in Section 3, including a
brief explanation of the individual classifiers used to develop
our cooperative proposal. In Section 4 the empirical results are
presented and discussed. Section 5 summarises the conclusions
and recommendations for further research work.

2. Literature review

The aim of credit scoring is to provide a score of the likelihood
of credit applicants to make repayments based on the distinction
between good (non-defaulters) and bad (defaulters) payers with
consideration of historical default experience. However,
because LDPs contain very limited default experience, the
historical PD estimates may underestimate the real default rates
(BCBS, 2005a; FSA, 2005). Additional drawbacks arise from
the validation of the LDP models (BCBS, 2005b; Benjamin
et al, 2006; Van der Burgt, 2008)1: the discriminatory power
could be too low for the models to meaningfully differentiate
among borrowers; sparse default data might lead to difficulty in
statistical backtesting, that is, calibration of whether the PD
estimates agree with the observed PD within a confidence
interval could be difficult; small data sets could lead to model
over-fitting, thus exhibiting low out-of-sample discriminatory
power and the rating grades could exhibit a low stability
if the models include spurious dependencies from the
empirical correlations that decrease the level of forecasting
accuracy.
Several regulations have provided guidelines for managing

LDPs, including new data sources and data-enhancement tools
such as pooling2 of data with other banks (OeNB, 2004) or
using alternative validation tools such as benchmarking and
expert judgements (BCBS, 2005a; FSA, 2005). Recommenda-
tions for PD estimates are conservative, with default probabil-
ities taken from the upper limit of a confidence interval,
backtesting based on robust statistical approaches, good gov-
ernance and control with banks documenting any aspect of
internal models, and timely validation of models reviewed
regularly to determine if they remain fully applicable.
Particular strategies have been proposed for PD estimates

depending on the nature of the LDPs (FSA, 2005). In the
absence of sufficient data (internally or externally) to derive the
PD estimates, quantitative techniques have been proposed for
use in identifying the appropriate upper limit of the PD,
including Bayesian theory and credibility theory, among
others (see Appendix A for a review). Such LDP models
are largely focused on theoretical PD distributions based on
prior knowledge (Löffler et al, 2004; Pluto and Tasche,
2005, 2006; Dwyer, 2007; Kiefer, 2009); however, the source

1Credit risk model should be validated in terms of discriminatory power (ex
ante ability to distinguish defaulters and non-defaulters), stability of causal
relationships between risk factors and creditworthiness, and calibration
referred to the accuracy of PD quantification (OeNB, 2004; BCBS, 2005b).
2Collection of the required default data from multiple credit institutions that
share their data sets.
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of prior information could be little reliable, or even unavailable,
for small portfolios with short default histories or with only
very recent crisis. In addition, these LDP models are usually
tested on ad hoc artificial samples (Forrest, 2005; Benjamin
et al, 2006; Dwyer, 2007; Kiefer, 2009), and critical parameter
decisions remain unsolved, such as the choice of the most
suitable confidence intervals (FSA, 2005). The literature on
real-world LDPs is quite limited (Sabato, 2006; Van der Burgt,
2008); it focuses on large data sets with few default experi-
ences, a limited number of credit risk determinants are con-
sidered, and even if backtesting is recognised as the most
important concern (Van der Burgt, 2008), no model validation
or calibration is provided.
As in any portfolio, the PD estimates must be compared with

the observed default rates to guarantee the reliability and
usefulness of the LDP models (BCBS, 2005a). However,
the credit-scoring techniques face two underlying problems
when dealing with small default data sets: (i) the class
imbalance between the defaulters and non-defaulters,
which produces biased estimates that certain techniques
are unable to handle (Brown and Mues, 2012; Marques
et al, 2013); and (ii) the specification error that arises when
estimating a large number of the model parameters from
limited and insufficient data.

2.1. Handling imbalanced data sets in credit risk

The class imbalance problem emerges when the number of
defaulters is much smaller than the number of non-defaulters
(Brown and Mues, 2012; Marques et al, 2013). Different
techniques have been proposed to manage the drop in perfor-
mance for the minority class estimation in the presence of class
imbalances and are largely focused on data re-sampling (over-
sampling and undersampling).
Oversampling attempts to balance the data set using replica-

tion of the minority class observations; the main drawbacks
stem from over-fitting problems, which could be managed by
the artificial generation of examples based on interpolation
and k-nearest neighbour strategies (Chawla et al, 2002; Batista
et al, 2004). In contrast, undersampling aims to balance the data
set via the removal of majority class examples; the main
drawbacks of this technique arise from a loss of information
from the discarded examples, which could be reduced by the
selective removal of redundant examples (Kubat and Matwin,
1997). Findings on the most efficient techniques are largely
inconclusive, even if certain evidence suggests that oversam-
pling methods may perform better than undersampling ones
(Batista et al, 2004).
With a focus on credit scoring, Marques et al (2013) compare

different techniques using five credit data sets with alternative
imbalance ratios (20/80 to 7/93). The experiments include
large- and medium-sized data sets and models are validated
in terms of AUC, Type-I and Type-II errors. The results sug-
gest that oversampling outperforms both the undersampling
techniques and the pure imbalance models; however, in the

presence of the smallest data set (317 observations), the over-
sampling and undersampling techniques obtain similar accura-
cies compared with that of models with no sampling
modification.
These results suggest that the presence of scarce data sets

reduces the efficacy of imbalanced data models. In this context,
effects of over-fitting and information loss become critical
because they increase the model specification error, leading to
biased parameters and misleading predictive results that cannot
be generalised (Sabato, 2006).

2.2. Handling specification error in credit risk

Specification error refers to the uncertainty in the suitability of a
model to provide correct representation of the analysed phe-
nomena due to missing variables (omitted variable bias),
extraneous variables (irrelevant features, multicollinearity),
over-parameterisation (in-sample bias), improper assumptions
(linearity, additivity), or inappropriate functional distribu-
tions (exponential, dispersion assumptions) (Deegan, 1974;
Horowitz, 1981).
The techniques that address specification error depend on

the nature of such error. In the presence of small data sets with
scarce defaults, three sources of specification error arise:
(i) extraneous and correlated variables, (ii) in-sample bias
(over-fitting), and (iii) high variance caused by estimators
validated on very different partitions of data. Although
the two first sources of error can be reduced by feature-
selection processes, the third source is more complex and
dramatically reduces the discriminatory power obtained
over independent data sets (generalisation accuracy). In
credit scoring, it leads to backtesting and calibration
problems because the PD estimates are largely different
than the real PD situations. Uncertainty in the out-of-sample
discriminatory power can compromise the model selection,
leading to false conclusions for the integrity of the classifi-
cation model which is aggravated in the presence of small
data sets (Beleites et al, 2005).
To manage the third source of specification error, robust

techniques must be applied for inferring adequate estimates of
the model’s generalisation accuracy. The test-and-training and
cross-validation approaches have been commonly used to
estimate the generalisation accuracy of credit models (Thomas
et al, 2001; Baesens et al, 2009; Brown and Mues, 2012;
Marques et al, 2013). However, in the presence of scarce data
sets, the test-and-training approach produces inefficient results
because dividing the initial sample into two separated sets
generates a significant loss of relevant information that leads to
in-sample bias. In addition, small samples lead to a notably
large variance of the cross-validated estimates, which suggests
over-fitted results (Shao and Tu, 1995).
These results suggest that the traditional approaches to

generalisation accuracy do not fit for scarce data sets. As an
alternative, re-sampling techniques, such as the bootstrapped
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approaches proposed in Section 3.2, could be a more efficient
alternative in the presence of scarce LDPs.

3. Methodology

3.1. A cooperative approach to credit scoring

Crook et al (2007) provide extensive reviews of the state-of-
the-art analysis of credit-scoring models, including: (i) heuristic
models such as rating questionnaires, expert systems, and fuzzy
logic systems; (ii) causal models such as option-pricing models
and cash-flow simulation models; (iii) statistical models such
as LR, linear and quadratic discriminant analysis; and (iv)
machine-learning models such as k-nearest neighbour, deci-
sion trees, ANNs, SVM, genetic programming, or neuro-
fuzzy models. However, conflicting opinions exist as to the
most suitable individual classifier, a choice that largely
depends on the size and characteristics of the data sets
(Baesens et al, 2003).
Focusing on scarce-default data sets, Brown and Mues

(2012) provide a comparative analysis of 10 well-established
credit-scoring techniques for use when facing alternative imbal-
ance ratios. The results from medium-large samples confirm
that the model suitability depends on the analysed data set;
however, two techniques based on the combination of indivi-
dual classifiers were observed to yield good performance results
with reduced data size, providing initial support for the use of
cooperative models for scarce LDPs.
Several theoretical arguments support the strength of

cooperative models for handling class imbalance (Kotsiankis
and Pintelas, 2003) as well as reducing specification error
(Dietterich, 1997; Zheng and Padmanabhan, 2007): (i) the
ensemble of models reduces the statistical risk of a wrong
choice between similar but opposite hypotheses; (ii) the models
cover a larger search space and reduce the risk of becoming
stuck in local optima; and (iii) the models represent a larger
number of hypotheses that obtain a better approximation to the
true endogenous function. The literature has confirmed that an
ensemble of models could consistently outperform the indivi-
dual classifiers (Bauer and Kohavi, 1999), even in the presence
of small data sets (Breiman, 1998). A necessary and sufficient
condition is that the combined classifiers must be both accurate
and diverse (Breiman, 2001). The first condition is a pre-
requisite of model-combining: the higher the individual accu-
racy, the higher the discriminatory power of the cooperative
models. The second condition exploits hypotheses indepen-
dence, leading to higher stability: the lower the correlation
between individual classifiers, the higher the potential of
removing errors by combining classifiers (Dietterich, 1997).
Considering both, two broad alternatives have been proposed
for building cooperative classifiers (Zheng and Padmanabhan,
2007): the ‘static parallel’ (SP) and the ‘perturb and combine’
(PC) approaches. The SP approach builds independent classi-
fiers in parallel to address a common data set (Zheng and
Padmanabhan, 2007). The PC approach uses a unique

algorithm on different subsets of data to build individual
models. The well-known PC techniques include bagging (based
on bootstrapped training samples) (Breiman, 1998), boosting
and arcing (based on sequential models of bootstrapped non-
covered examples) (Schapire, 1990; Freund and Schapire,
1997).
The literature on credit scoring has recently highlighted the

gain in accuracy produced by ensembles of classifiers for large
data sets (Nanni and Lumini, 2009; Hsieh and Hung, 2010;
Finlay, 2011; Wang et al, 2011). However, to the extent of our
knowledge, the potential of cooperative models for managing
scarce LDPs, although suggested in some works, has not yet
been empirically tested.3

3.2. The adjusted-cooperative proposal for scarce LDPs

In this paper, a proposal based on cooperative models is
introduced to handle scarce LDPs, being organised in three
successive stages as analysed below. Because both the SP and
PC approaches contain potential advantages in dealing with
scarce LDPs, we use these approaches in different steps.4 The
SP approach will be considered for generating individual
models, while a PC bootstrapped-based strategy will be used
for generalisation of the accuracy estimates.

3.2.1. Generation of individual models. Five well-established
scoring techniques are used as individual models.5 A brief
explanation of each of the techniques is presented below.

● Linear discriminant analysis (LDA) assigns an observation
to the binary response yi (y∈ {0, 1}) with the largest posterior
probability, depending on values of interval or dummy inde-
pendent predictors (xki), where p(y|x)= (p(x|y)p(y))/p(x). A dis-
criminant function is obtained to separate the binary classes,
Zim= αm + Σk= 1

K βmkXik, with observations assigned to

3Cooperative models are also coherent with the Credibility Theory (FSA,
2005), which ‘is about taking several estimates of some quantity and then
computing a weighted average composite estimate, with the size of the
weights being determined by how credible the individual estimates are’
(p 10).
4The SP approach integrates classifiers with different assumptions, leading
to a large search space that increases the generalisation accuracy while
simultaneously preventing the loss of information. Individual models perform
feature selection on different criteria such that extraneous variables are
underweighted in the final cooperative approach. Over-fitting is reduced
because models with uncorrelated errors are combined, but no individual
strategies for handling imbalanced sets are proposed. Additionally, PC
techniques reduce the deviation of individual classifiers using voting boot-
strapped models, which could be a potential solution to the high-variance
specification error problem and could increase stability. Building sequential
models on particular divisions of data could also aid in handling imbalanced
classes, but in the presence of scarce data sets, dividing the initial sample into
multiple small subsets could lead to over-fitted and highly correlated
classifiers, thus reducing the suitability of the ensemble model.
5These models are based on different assumptions and use different forms of
parameter estimation (Kuncheva, 2004); therefore, they fulfil the indepen-
dence condition.
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each class with respect to a cut-off point (Z(x)> Z0 or
Z(x)⩽ Z0).

● Logistic regression (LR) is a generalised linear model
that uses a logistic function for modelling the dependent
variable, where logit(p)= log(p/(1− p))=αm+Σk= 1

K βmkXik,
p is a score in [0, 1] that reflects the default probability.

● K-nearest neighbour (k-nn) is a local-search method that uses
a distance function, eg the Euclidean distance d(xi, xj)=
[Σk= 1

K (xki − xkj)
2]1/2, to gather the nearest k neighbours

of an unclassified observation; the class most heavily
represented in the neighbour area is assigned to the
observation.

● Support vector machine (SVM) is a supervised learning
model that performs a local search based on Vapnik’s
structural risk minimisation principle (Vapnik, 1995).
The SVM uses quadratic programming to find a
maximum-margin separating hyper-plane in a selected
transformed feature space, so that the examples that are
situated closest to the hyper-plane are referred to as
support vectors. Both linear and non-linear kernel func-
tions can be considered in defining the decision boundary
between classes. In the linear SVM, the K function that
measures the similarity of a stored training example x!i to
the input x! is linear, and the optimisation problem can be
defined as:

min
α!

ψðαÞ ¼min
α!

1
2

XN
i¼1

XN
j¼1

yiyjKð x!i; x
!Þαiαj

-
XN
i¼1

αi; 0⩽ αi ⩽C; 8i;
XN
i¼1

yiαi ¼ 0; ð1Þ

where u is the output of SVM, yi is the desired binary
output, and C is a tuning parameter to control the trade-
off between maximising the margin and minimising the
classification error.

● Artificial neural network (ANN) is a machine-learning
approach that uses massively parallel systems of computing
units (nodes) connected and organised into layers to simulate
the computational efficiency of a biological nervous system
(Bishop, 1995). Among the ANNs, the Multilayer Perceptron
or MLP is the most widely used supervised model for
classification and prediction. The MLP is organised into
successive input layers (that receive exogenous variables), j
hidden layers with Hj hidden units (that combine inputs
through a weighting scheme) and output layers (that produce
the model forecasting). During the training stage, the weights
of the network are iteratively adjusted to minimise an error
function (eg, the sum of squared errors).

3.2.2. Evaluation of individual models. Different measures
have been proposed to evaluate model performance, such as the
accuracy ratio, the Gini coefficient measures, Kolmogorov–
Smirnov statistics, mean difference statistics, information value,

Type-I and Type-II errors (Thomas et al, 2001; BCBS,
2005a; Hand, 2005). Although only a few measures are com-
monly implemented, characteristics of data sets as size, class
distribution, or noise can deeply affect the accuracy estimates
(Peng et al, 2011). In addition, each measure fails to include all
information relevant in the context of the scoring problem
(Hand, 2005), and, therefore, the conclusions reached could be
misleading. In this paper, different measures are used to assess
the discriminatory power based on their potential for addressing
class imbalance and small samples:

● Accuracy rate (AR): the percent of correctly classified
instances or AR= (TN+TP)/(TP+FP+FN+TN), where
TN, TN, FP, and FN are the true positive, true negative, false
positive, and false negative examples, respectively.

● Type-I error: the number of defaulters misclassified as non-
defaulted clients.

● Type-II error: the number of non-defaulters misclassified as
defaulted clients.

● ROC (receiver-operating characteristics) curve: the trade-off
between the TP and FP rates in a two-dimensional measure
of performance. The area under the curve (AUC) represents
the accuracy of the classifier and is suggested as an appro-
priate performance evaluator independent of the class dis-
tribution (Sabato, 2006; Brown and Mues, 2012; Marques
et al, 2013).

Statistical significance of differences between the AUCs derived
from different classifiers of a sample will be tested using the
DeLong et al (1988) non-parametric chi-squared test, which
uses the theory of generalised U-statistics and the method of
structural components to estimate the covariance matrix of the
AUC (Baesens et al, 2004). In addition, Friedman’s test
(Friedman, 1940) will be adopted to compare the AUCs of
different classifiers of multiple data sets (Demšar, 2006; Brown
and Mues, 2012; Marques et al, 2013).
To obtain adequate estimates, the accuracy measures are

evaluated using a PC-based strategy, the .632E bootstrapping
approach, which has been proven efficient in controlling the
specification error (Beleites et al, 2005). The .632E bootstrap
method (Efron and Tibshirani, 1995) estimates the in-sample
bias by randomly drawing B bootstrap sub-samples of size N
with replacement, so that the true misclassification error is
estimated as:

Êrr:632E ¼ 0:368 ´ err + 0:632 ´E0; (2)

where err is the error on the training set (re-substitution error),
and E0 is the bootstrap average error on examples not included
in each bootstrap sub-sample. Bootstrapping approaches have
been found to produce tighter PD confidence intervals than
those of the traditional Wald approach in the presence of LDPs
(Schuermann and Hanson, 2004). In this paper, the non-
parametric percentile-based bootstrapped intervals are obtained
as follows:

Ê0% low; Ê0% up

� � ¼ Ê0ðαÞB ; Ê0ð1- αÞB

h i
; (3)
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where Ê0% low; Ê0% up

� �
is the bootstrapped interval, Ê0ðαÞB is

the 100·αth empirical percentile of the error distribution.

3.2.3. Combination of multiple models. The literature on
cooperative models has tested different techniques to combine
individual classifiers such as the voting principle, Bayesian
formalism, Dempster–Shafer theory, neural networks, statis-
tical regressions, or fuzzy integrals (Lee, 1995). In practice,
variants of the voting principle are simple but accurate
approaches, which include the unweighted vote, the sum rule,
or the weighted vote (Hsieh and Hung, 2010; Finlay, 2011).
Out of these, the weighted vote is one of the most accurate
variants, which introduces the reliability of the individual
classifiers (weights) in the final decision (Finlay, 2011).
Despite their simplicity, voting methods are based on the

assumptions of independence between classifiers, which are not
fulfilled in practice. This drawback reduces the gain of dis-
criminatory power in presence of highly correlated individual
models. To address this drawback, we propose to adjust the
weighted vote scheme by considering model similarities, as
follows. On the basis of the most accurate model (m*), the
individual weights will be adjusted using two alternative
factors6:

(a) A pseudo-correlation penalty measure in terms of region
overlap (Ho, 1998) as:

ŝm�; j ¼ 1 -
1
N

XN
k¼1

f ðtkÞ; (4)

where f(tk)= 1 if both classifiers (m*, j) predict the same
class for the k-th instance (k= 1,…,N), and f(tk)= 0
otherwise.

(b) A pseudo-independence measure in terms of credit scores as:

îm�; j ¼ 1
N

XN
k¼1

j ðsm� - sjÞ j; 1⩽ sm� ; sj ⩽ 0; (5)

where sm� ; sj are the scores of the k-th instance in the m*
and j classifiers, respectively.

4. Empirical research

4.1. Data set

The characteristics of the data sets used in evaluating classi-
fiers are given in Table 1. The German data set contains
1000 instances of retail loans from a major German bank.
These instances are classified as good (70%) or bad (30%)
clients using a set of 20 numerical and categorical highly
correlated attributes. The Japanese data set represents a greatly
reduced portfolio that includes 125 instances of credit grant

applicants with 85 instances classified as good (68%) and 40
classified as bad (32%). Both data sets are publicly available
at the UCI repository (http://archive.ics.uci.edu/ml/) and have
been previously used in the LDP and class imbalance literature
(Brown and Mues, 2012; Marques et al, 2013).
Because these data sets do not represent sparse portfolios on

their own, they have been altered to produce small samples with
a reduced number of defaults. This process was carried via
random stratified sampling,7 producing training samples of 10%
(German data set) and 20% size (Japanese data set). As a result,
sparse training samples were constructed that included a limited
number of defaults (Table 1). The non-selected observations
were used for out-of-time calibration purposes.

4.2. Experimental set-up

The categorical variables were pre-processed, with each cate-
gory allocated to a separate variable. For cases in which a
category contained very few observations, coarse classing was
applied to merge the category with another category with a
similar good/bad ratio (Thomas et al, 2001; Finlay, 2011).
Preliminary feature selection was undertaken using step-wise
(forward) regression based on Wilks’s partial lambda with a
significance level (p) of 5%.
Once features were selected, the individual classifiers were

built next.8 Preliminary experiments were performed to define
the parameters of the k-nn, SVM, and ANN models. A set of
10 bins was obtained with replacement from the training sample
and was used to build alternative models for different parameter
values. The out-of-bin observations were used to test the
parameter estimates such that the model with the highest
average out-of-bin accuracy rate was selected. For the k-nn
algorithm, different values of kwere tested,9 and the final values
of k= 10 (German) and k= 4 (Japanese) were adopted.

Table 1 Empirical data sets

Full data set Scarce training
data set

Validation
data set

Good Bad Total Good Bad Total Good Bad Total

German data set 700 300 1000 70 30 100 630 270 900
Japanese data set 85 40 125 17 8 25 68 32 100

6Weights are computed from the accuracy of each additive classifier,
subsequently multiplied by the pseudo-correlation penalty measure (respec-
tively, pseudo-independence measure), and finally normalised.

7For this empirical study, our focus is on the performance of cooperative
techniques for small data sets with a reduced number of defaults, such as the
emerged LDPs from the post-crisis scenario. Therefore, we have maintained
the original imbalance ratio of the original sets (∼70/30), which is the
moderate, basis split used in the literature when analysing imbalanced data
sets (Brown and Mues, 2012).
8A cut-off level point of 0.5 was used to calculate accuracy rate and errors.
9The proper choice of k largely depends on the data, with k commonly
moving between 1 and N−1. The smaller the k, the higher the noise and the
variance; the larger the k, the higher the bias. A rule of thumb is selection of
k′=N1/2 (10 and 5 for German and Japanese sets); we tested k ranging from
2 to 2k′.
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Following suggestions from the literature, the Euclidean
distance was used as the neighbourhood function (Brown and
Mues, 2012).
SVM were built with a linear kernel based on Platt’s

sequential minimal optimisation algorithm, which is particu-
larly suited to the presence of a small data set. The SVM
parameters were established following Platt’s (1998) recom-
mendations for classification task: the tolerance for accuracy
(minimum relative improvement in the objective function at
each step) was established at 0.001 to prevent over-fitting, and
the C-value that controls margin failures was set to 1.
The ANN classifier architecture was adopted with a single

hidden layer and one output node. The best performing number
of hidden neurons (two units) was selected based on the 10-bin
procedure previously presented.10 Logistic activation functions
were used in both data sets (Brown and Mues, 2012).
Four cooperative models were investigated: the original

voting scheme (OVS), weighted-voting (WVS) based on the
accuracy rate, adjusted-weighted voting based on the pseudo-
correlation penalty measure [AWS(s)], and adjusted-weighted
voting based on the pseudo-independence measure [AWS(i)].
The accuracy was computed using 50 bootstrapping samples,11

models were run on each classifier using identical training and
bootstrapping samples.

4.3. Results for discriminatory power

Table 2 reports the discriminatory power of the individual
classifiers on the German and Japanese data sets in terms
of out-of-time error (validation dataset). Detailed figures on
re-substitution error (training sample), out-of-sample error
(.632E bootstrapped subsamples), and confidence intervals are
included in Appendix B.
Results show slight differences in terms of the generalisation

error, ranging from 27.8% (SVM) to 29.1% (k-nn algorithm).
The AUC measure points to a higher accuracy for the machine-
learning models (SVM and ANN) over that of the pure
statistical models (LDA, LR), which is in agreement with
previous works on imbalanced sets (eg, Brown and Mues,
2012). The DeLong test confirms a significant difference
between the AUC of the best and worst individual model using
a significance level of 5%.
The cooperative models generate a smaller generalisation

error (27.3–28.0%) than any individual model (except for
SVM), and a greater AUC. A major reduction of Type-II error
is observed, despite a slight increase in the Type-I error. No
differences were found between the original voting strategy

(OVS) and the weighting voting scheme (WVS). Although the
adjusted-weighted voting strategy generates a small error
reduction compared with previous voting methods, the increase
in the AUC is rather large. The DeLong test confirmed the
presence of significant differences between the best and worse
cooperative strategies (α= 0.05). Additionally, a significant
difference was obtained in the comparison of the best individual
and cooperative models.
An unsolved question in the LDP literature is the definition

of the most suitable PD confidence interval. Most theoretical
confidence levels have been proposed (50.0–99.9%), with
certain authors arguing that a confidence level of less than
95% appears intuitively appropriate (Pluto and Tasche, 2005,
2006; Wilde and Jackson, 2006). In our empirical application,
the comparison between generalisation and re-substitution
overall error does not provide a clear upper confidence level
for individual models, which varies between 90.8% (LDA, LR)
and 99.8% (k-nn). Only the ANN re-substitution error is found
to be more predictive (58.0%). The cooperative models obtain
more adjusted confidence levels for the re-substitution error,
namely, 98.3–98.9% (overall error), 99.8–99.9% (Type-II error),
and 84.6–84.8% (Type-I error).
In addition, the bootstrapped error estimates from LDA, LR,

and k-nn produce more accurate error estimates that are fairly
close to the true generalisation error. Tight confidence levels12

within 50.0–51.2% (overall error), 47.0–56.3% (Type-II error),
40.9–54.1% (Type-I error) were found for the statistical models,
but these values deteriorate for the machine-learning approaches.
Similarly, the bootstrapped confidence levels for the OVS and
WVS are close to 50% for the overall error (55% for Type-II,
60% for Type-I), and those of the adjusted cooperative technique
range 51.3–63.2%.
The Japanese data set represents a much sparse sample, and,

therefore, the distortions on the error estimates are expected to be
larger than those from the German data set. Results in Table 2
confirm the higher variance of the error confidence interval width
in both the training and bootstrapping confidence intervals.
The generalisation error falls between 24.0% (SVM) and

39.0% (LDA, ANN) for the individual models. Once more, the
classical statistical techniques are the most balanced models in
terms of Type-I and Type-II errors. The techniques that achieve
the highest AUC are the LR and SVM. The DeLong test
confirms a significant difference between the best and worst
AUC using a significance level of 5%. The cooperative models
generate tighter generalisation errors in the range of 28.0%
(AWSmodels) and 30.0% (OVS andWVS), slightly better than
those of the LDA and ANN techniques. However, the AUC
measure identifies cooperative approaches as the highest per-
forming models, with significant increases over the individual
techniques, particularly with respect to the OVS variant. Again,
the DeLong test confirms a significant difference between the
AUC of the best and worst cooperative models (α= 0.05).

10One hidden layer is usually enough to characterise any arbitrary complex
hidden function. However, no solutions have been provided to establish the
best number of hidden neurons (h); a widely used rule of thumb considers
h= (K·M)1/2, with K as the number of input neurons and M as the number of
output neurons. We tested h in [2, 10].
11Efron and Tibshirani (1995) recommend at least 25 bootstrap sub-samples
(B) for statistical purposes and no more than 200 for computational efficiency;
50 bootstrap sub-samples are usually enough to guarantee robust results.

12The closer the confidence level to 50%, the better the generalisation
accuracy of the classifiers.

422 Journal of the Operational Research Society Vol. 65, No. 3



www.manaraa.com

A significant difference was also observed between the AUC of
the best individual and cooperative models.
In terms of defining the most suitable confidence intervals,

the generalisation error shows a wider range of confidence
levels than the German results (re-substitution error functions);
such confidence level varies between 41.2% (k-nn) and 99.1%
(LDA, ANN) for the overall error (9.3–94.9% and 69.6–95.7%
for Type-II and Type-I errors, respectively). The cooperative
models obtain much tighter and stable results, suggesting a
confidence level around 84.1–97.2% for the overall error
distribution. The bootstrapped estimates also produce a large
range of confidence levels for the individual models, ranging
15.5–56.3% (overall error), 26.1–68.9% (Type-I error), and
21.6–45.5% (Type-II error); again, the LDA is the classifier
with the closest bootstrapped estimates. The cooperative models
are much nearer to the 50% bootstrapped confidence interval,
which suggests their accuracy in predicting the out-of-time
generalisation error.
Previous results suggest a potential AUC superiority of the

cooperative models in both data sets, which was analysed by
Friedman’s test (Iman and Davenport’s variant) (Demšar, 2006);

although no consistent significant difference is observed between
the AUC ranks for the individual (p=0.274) or cooperative
models (p=0.261), the latter clearly outperforms the individual
classifiers using a significance level of 5% (p=0.001).13

4.4. Results of calibration

The previous results are complemented by the model calibra-
tion, which assesses the accuracy of the PD estimates for each
rating grade. A rating system is considered well calibrated if the
(ex ante) estimated risk measures deviate only marginally from
the ex post observations (Castermans et al, 2010). On a first
stage, a suitable number of ratings must be established to calibrate
the models. Basel II does not require a minimum number of
grades for retail exposures even if a sufficient number should be
established for credit risk management. For the LDPs, Basel II
recommends a reduction in the rating categories by combining

Table 2 Results of discriminatory power

German data set Japanese data set

Overall error Type-II error Type-I error AUC Overall error Type-II error Type-I error AUC

LDA 0.286 0.167 0.563 0.720 0.390 0.324 0.531 0.745
(0.908) (0.918) (0.755) (0.991) (0.949) (0.957)
(0.512) (0.520) (0.530) (0.563) (0.567) (0.394)

LR 0.286 0.164 0.570 0.718 0.280 0.162 0.531 0.810
(0.908) (0.963) (0.658) (0.841) (0.719) (0.811)
(0.500) (0.470) (0.541) (0.303) (0.383) (0.455)

k-nn 0.291 0.167 0.582 0.656 0.260 0.103 0.594 0.665
(0.998) (0.999) (0.950) (0.412) (0.093) (0.884)
(0.503) (0.563) (0.409) (0.172) (0.261) (0.419)

SVM 0.278 0.137 0.607 0.723 0.240 0.015 0.719 0.746
(0.952) (0.984) (0.792) (0.500) (0.214) (0.696)
(0.461) (0.605) (0.496) (0.155) (0.635) (0.216)

ANN 0.286 0.156 0.589 0.720 0.390 0.324 0.531 0.742
(0.580) (0.463) (0.613) (0.991) (0.949) (0.957)
(0.250) (0.446) (0.378) (0.481) (0.689) (0.289)

OVS 0.273 0.137 0.593 0.725 0.300 0.191 0.531 0.910
(0.983) (0.998) (0.846) (0.972) (0.825) (0.955)
(0.503) (0.547) (0.594) (0.461) (0.428) (0.460)

WVS 0.273 0.137 0.593 0.725 0.300 0.191 0.531 0.856
(0.983) (0.998) (0.846) (0.894) (0.565) (0.955)
(0.503) (0.547) (0.594) (0.461) (0.428) (0.460)

AWS (s) 0.280 0.146 0.593 0.737 0.280 0.162 0.531 0.865
(0.989) (0.999) (0.846) (0.841) (0.713) (0.819)
(0.589) (0.513) (0.632) (0.383) (0.420) (0.441)

AWS (i) 0.277 0.143 0.594 0.726 0.280 0.162 0.531 0.777
(0.987) (0.999) (0.848) (0.841) (0.713) (0.819)
(0.580) (0.529) (0.632) (0.383) (0.420) (0.441)

DeLong test SVM versus k-nn: p< 0.001 DeLong test LR versus k-nn: p< 0.001
AWS(s) versus WVS: p< 0.001 OVS versus AWS(i): p< 0.001
SVM versus AWS (s): p< 0.05 LR versus OVS: p< 0.001

Note: Generalisation error (confidence level for re-substitution error) (confidence level for bootstrapped error).

13Post-estimate Nemenyi tests were not performed given the reduced
number of analysed data sets; under these conditions, the Nemenyi test
exhibits little power (Demšar, 2006).
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Table 3 Calibration of the German data set (multiple-grade models)

Calibration
(PD estimates)

Train PD (PR) Bootstrap PD (PR) Generalisation PD (validation data test)

Mean Confid. interval*
α= 0.05

Mean Confid. interval
α= 0.05

Real PD
(DR)

Confid. level
train (1−α)

Confid. level
.632E (1−α)

DR versus PR
distance (train)

(%)

DR versus PR
distance (.632E)

(%)

LDA Rating 1 0.122 (0.043, 0.197) 0.182 (0.108, 0.273) 0.147 0.704 0.208 20.49 − 19.23
Rating 2 0.286 (0.119, 0.443) 0.289 (0.105, 0.642) 0.269 0.432 0.497 − 5.94 − 6.92
Rating 3 0.333 (0.102, 0.550) 0.369 (0.123, 0.755) 0.500 0.890 0.821 50.15 35.50
Rating 4 0.600 (0.337, 0.847) 0.456 (0.221, 0.853) 0.504 0.268 0.606 − 16.00 10.53
Rating 5 1.000 (1.000, 1.000) 0.738 (0.451, 1.000) 0.597 — 0.157 − 40.30 − 19.11

LR Rating 1 0.128 (0.045, 0.206) 0.182 (0.108, 0.273) 0.142 0.613 0.203 10.94 − 21.98
Rating 2 0.261 (0.119, 0.407) 0.289 (0.105, 0.642) 0.261 0.500 0.536 0.00 − 9.69
Rating 3 0.333 (0.102, 0.527) 0.369 (0.123, 0.755) 0.500 0.915 0.873 50.15 35.50
Rating 4 0.800 (0.586, 1.000) 0.456 (0.221, 0.853) 0.536 0.018 0.549 − 33.00 17.54
Rating 5 1.000 (1.000, 1.000) 0.738 (0.451, 1.000) 0.547 — 0.130 − 45.30 − 25.88

k-nn Rating 1 0.211 (0.122, 0.295) 0.252 (0.077, 0.487) 0.226 0.612 0.462 7.11 − 10.32
Rating 2 0.278 (0.099, 0.446) 0.282 (0.102, 0.535) 0.276 0.492 0.471 − 0.72 − 2.13
Rating 3 0.714 (0.509, 0.907) 0.491 (0.263, 0.895) 0.504 0.041 0.545 − 29.41 2.65
Rating 4 0.667 (0.206, 1.000) 0.491 (0.245, 0.877) 0.528 0.305 0.550 − 20.84 7.54
Rating 5 1.000 (1.000, 1.000) 0.624 (0.368, 1.000) 0.542 — 0.398 − 45.80 − 13.14

SVM Rating 1 0.071 (0.015, 0.124) 0.157 (0.026, 0.279) 0.092 0.737 0.191 29.58 − 41.40
Rating 2 0.250 (0.077, 0.413) 0.252 (0.145, 0.408) 0.241 0.465 0.454 − 3.60 − 4.37
Rating 3 0.391 (0.170, 0.599) 0.374 (0.172, 0.629) 0.478 0.748 0.867 22.25 27.81
Rating 4 1.000 (1.000, 1.000) 0.714 (0.389, 1.000) 0.588 — 0.234 − 99.94 − 17.65
Rating 5 n.a. (n.a., n.a.) n.a. (n.a., n.a.) n.a. n.a. n.a. n.a. n.a.

ANN Rating 1 0.175 (0.092, 0.253) 0.118 (0.000, 0.268) 0.059 0.009 0.254 − 66.29 − 50.00
Rating 2 0.235 (0.066, 0.394) 0.253 (0.143, 0.396) 0.258 0.591 0.423 9.79 1.98
Rating 3 0.556 (0.331, 0.768) 0.444 (0.226, 0.637) 0.514 0.376 0.711 − 7.55 15.77
Rating 4 0.857 (0.514, 1.000) 0.663 (0.368, 1.000) 0.580 0.085 0.362 − 32.32 − 12.52
Rating 5 1.000 (1.000, 1.000) n.a. (n.a., n.a.) n.a. n.a. n.a. n.a. n.a.

OVS Rating 1 0.095 (0.073, 0.116) 0.174 (0.096, 0.246) 0.122 0.980 0.138 28.42 − 29.89
Rating 2 0.250 (0.144, 0.350) 0.260 (0.092, 0.463) 0.296 0.769 0.687 18.40 13.85
Rating 3 0.571 (0.229, 0.893) 0.406 (0.210, 0.613) 0.461 0.293 0.670 − 19.26 13.55
Rating 4 0.750 (0.491, 0.994) 0.567 (0.276, 0.908) 0.596 0.151 0.751 − 20.53 5.11
Rating 5 1.000 (1.000, 1.000) 0.775 (0.368, 1.000) 0.602 — 0.144 − 43.20 − 26.71

WVS Rating 1 0.095 (0.073, 0.116) 0.175 (0.096, 0.251) 0.126 0.980 0.127 32.63 − 30.29
Rating 2 0.250 (0.144, 0.350) 0.260 (0.112, 0.433) 0.296 0.769 0.689 17.60 13.85
Rating 3 0.571 (0.229, 0.893) 0.402 (0.210, 0.589) 0.461 0.293 0.670 − 19.26 14.68
Rating 4 0.750 (0.491, 0.994) 0.578 (0.276, 0.908) 0.606 0.173 0.712 − 19.20 4.84
Rating 5 1.000 (1.000, 1.000) 0.782 (0.368, 1.000) 0.531 — 0.127 − 46.90 − 32.10
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grades to make backtesting more meaningful (BCBS, 2005a).
Therefore, the LDP literature has typically developed a two-class
prediction model (default versus non-default). However, data-
enhancement tools are expected to define a higher number of
grades.
In this paper, the results are calibrated by: (i) a simple default

model that forecasts good (score⩾ 0.5) versus bad (score< 0.5)
clients, and (b) an experimentally based multi-grade model that
divides the full scoring scale on the higher potential number of
grades (5 and 3 grades for the German and Japanese data sets,
respectively). The experimental procedure searches for signifi-
cant PD differences among the grades. Using the bootstrapped
sub-samples, alternative k rating grades (3–7) were uniformly
defined (OENB, 2004). Next, the observed PDs were obtained
from examples taken out of the sub-samples and pooled on the
pre-defined rating. The PD differences along all grades were
tested using the Kruskal–Wallis non-parametric test (Sheskin,
2006). If the null hypothesis was rejected (significant differ-
ences exist between at least two groups), a Mann–Whitney
U test was applied to analyse the PD differences between pairs
of neighbouring grades. The process was initiated by the
minimum grade definition (three groups) and repeated for an
incremental number of grades until the null hypotheses of both
tests were rejected.
Table 3 and Appendix C summarise the calibration results for

the multi-grade and default models for the German data set,
respectively. The confidence levels for the generalisation PD are
computed together with the relative distance between the
predicted default rate (PR) and the real default rate (DR), defined
as (DR−PR)/PR. Appendix C reports small differences in the
PD estimates between the default individual models. The non-
default category obtains a reduced generalisation PD for the
LDA and LR (DR< 0.23), and the SVM and ANN are the better
predictors for the default class (DR> 0.55). In any case, the DR
for the non-default grade lies in the 95–99.9% confidence level
of the PD estimates (re-substitution model) with DR–PR
distances of 11.3–37.7%. The bootstrapped estimates are much
more accurate, with a maximum distance of 6% (ANN non-
default) and a minimum of 1.67% (LDA default). Additionally,
the bootstrapped confidence levels approach 50%. The coopera-
tive models obtain similar results, with a slightly higher DR for
the predicted non-defaults (23.00–24.00%) and a 54% DR for
the predicted defaults. The adjusted weighted voting models are
slightly more accurate than the original voting and weighted
voting schemes. The confidence levels based on the re-substitution
PD are over 99.9%, and the bootstrapped confidence levels are
closer to 70% for the predicted non-defaults.
The result in Table 3 shows the differences among the

individual classifiers for the multi-grade PD. The LDA and LR
generate the widest PD range even if the intermediate ratings
produce closer results; the real PD for the better grades reaches
14.2–14.7%. The machine-learning models (SVM and ANN)
only recognise four grades as relevant, with DRs per grade that
are much different (9.20–58.8% and 5.90–58.0% DR ranges,
respectively). The bootstrapped PD estimates (ratings 2 and 4)A
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are closer to DR than those from the extreme grades (ratings
1 and 5), which tend to be overestimated (LDA, LR). In
contrast, rating 3 is underestimated in all models (but k-nn).
These differences suggest skewness differences between the
bootstrapped and the real PD distributions. The distances
between the DR and PR are smaller for the LDA and LR and
increase for machine-learning models.
The cooperative approaches produce higher PD differences

among the grades, thus improving their utility for managing
credit risk. Although the OVS and WVS do not adequately
differentiate between ratings 4 and 5, the AWS models obtain a
reduced DR for the predicted non-defaulters (12.2–12.9%)
while still differentiating among the five grades. Ratings 4 and
5 produce the largest absolute DR versus PR distance, which
suggests their potential integration.
No clear upper limits of confidence intervals are obtained for

the individual models. For the best rating, the re-substitution PD
is underestimated in most models (with the ANN exception).
For the worst rating, the re-substitution PD is overestimated
in all models. These results suggest a wider range for the
estimated PD distribution than the true range, including a
bias in the intermediate grades. The cooperative models
obtain more stable results, with a confidence level ranging
between 96.9% and 99.7% for the best rating, which is
reduced to 67.9–76.9% for the second, and successively.
Again, the distribution of the confidence levels suggests a
narrower DR than that predicted.
The bootstrapped estimates are much closer to the real PD,

and the confidence limits are below 50% for the two best grades
and the two worse grades and over 50% for the intermediate
grades. This result confirms the skewness bias between the DR
and PR estimates. This difference is larger for the cooperative
models, with confidence intervals 12.7–19.7% for the best
grade (absolute DR versus PR distance is 24.6–30.3%).
Table 4 and Appendix C summarise the calibration results on

the multi-grade and default models for the Japanese data set,
respectively. For the default model, LR and ANN represent
the best predictors for the non-defaulters (DR in 23.0–23.6%),
and SVM is the best default model (DR in 90.0%). However,
the k-nn is not able to distinguish between categories in the
presence of such a small data set. The re-substitution confidence
intervals vary in a wide range: 47.3–99.9% (non-default grade)
and 8.7–68.8% (default grade). The bootstrapped estimates are
much closer to the real PD, and the non-default DR versus
PR distance ranges 8.0–16.9% (absolute values), and the con-
fidence levels are 27.4–67.9%.
The cooperative models are the best calibrated, producing

both a small real PD for the non-defaulters (23.0–23.6%) and a
large DR for the defaulters (53.6–57.7%). The confidence levels
are very similar between variants, approaching 99.9% for the
non-defaulters (as in the German data set). The bootstrapped
error estimates are very tight as well, with confidence levels
ranging between 49.9% and 57.9% (both defaulters and non-
defaulters). The distance between the non-default DR and PR is
much reduced (3.5–6.9% in absolute values). Although slight

differences emerge between the cooperative models, the
adjusted approaches obtain the most accurate and close results.
For the multi-grade ratings, Table 4 reports different real PDs

for the best rating, which range from 15.6% (LR) to 28.3%
(LDA, ANN) for individual models. However, the machine-
learning models are not able to distinguish between the second
and third grade, and the LR obtains inadequate PD estimates
(PD second grade higher than PD third grade). As expected,
higher distortions are observed with respect to the German
results.
In spite of this, a smaller distance is observed between DR

and bootstrapped PR; eg the absolute distance between the
bootstrapped estimates and the real PD falls between 19.41%
(LDA) and 27.48% (ANN) in the first grade. However, the re-
substitution PD estimates are much more distanced from DRs.
Rating 1 is highly underestimated, particularly for the LR
(102.60%), LDA (97.90%), and ANN (97.90%) models, such
that the confidence level approaches 99.9% (with the exception
of the SVM and k-nn). In contrast, rating 3 behaves more
erratically, and no patterns of the confidence levels are obtained
for any resubstitution or bootstrapped estimates.
The cooperative results overcome previous problems,

providing robust PD estimates for any grade. The adjusted
cooperative models are particularly efficient, producing a
16.1% real PD for the best grade, 56.8% for the second grade,
and 100% for the third grade. The confidence level reaches
99.9% for the best grade (re-substitution estimates). The boot-
strapped PD is more closely adjusted to the real PD, even if the
skewness hypothesis is not confirmed. The absolute distances
between the bootstrapped predictions and the real PDs range
from 9.9–21.5% (first grade), 4.4–28.5% (second grade), and
72.1–75.8% (third grade). The bootstrapped confidence levels
for the best grade approach 40%.

5. Conclusions

In a post-crisis scenario, notably large losses have arisen from
small portfolios with a lack of historical default data and a
reduced number of observations (ie, sovereigns, OECD banks,
specialised retail lending). These portfolios have been largely
forgotten in the literature on LDPs, which have provided a
reduced number of theoretical and non-empirically tested
proposals focused on large data sets.
In this comparative study, we examined a number of

statistical and machine-learning techniques for modelling small
portfolios with scarce defaults (scarce LDPs) in two real
credit risk data sets. Four cooperative models were additionally
proposed to address the class imbalance and error specification
problems that characterise these samples. The performance of
these techniques was assessed in terms of the out-of-sample
(.632E bootstrapping estimates) and out-of-time (independent
validation set) discriminatory power and calibration results.
The discriminatory power was assessed through alternative
measures (accuracy rate, Type-I error, Type-II error, AUC).
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Table 4 Calibration of Japanese data set (multi-grade model)

Individual models
(PD estimate)

Train PD (PR) Bootstrap PD (PR) Generalisation PD (validation data test)

Mean Confid. interval*
α= 0.05

Mean Confid. interval
α= 0.05

Real PD
(DR)

Confid. level
train (1−α)

Confid. level
.632E (1−α)

DR versus PR
distance (train)

(%)

DR versus PR
distance (.632E)

(%)

LDA Rating 1 0.143 (0.066, 0.215) 0.237 (0.053, 0.455) 0.283 0.999 0.724 97.90 19.41
Rating 2 0.444 (0.304, 0.576) 0.405 (0.164, 0.796) 0.306 0.048 0.523 − 31.08 − 24.44
Rating 3 1.000 (1.000, 1.000) 0.603 (0.368, 1.000) 1.000 0.500 0.882 0.00 65.84

LR Rating 1 0.077 (0.041, 0.111) 0.210 (0.028, 0.431) 0.156 0.999 0.389 102.60 − 25.71
Rating 2 0.500 (0.200, 0.782) 0.530 (0.184, 0.816) 0.619 0.750 0.854 23.80 16.79
Rating 3 0.750 (0.016, 1.000) 0.507 (0.276, 0.908) 0.600 0.365 0.603 − 20.00 18.34

k-nn Rating 1 0.153 (0.104, 0.199) 0.328 (0.053, 0.455) 0.194 0.921 0.388 26.80 − 16.74
Rating 2 0.556 (0.258, 0.836) 0.461 (0.204, 0.836) 0.613 0.627 0.721 10.25 32.97
Rating 3 0.500 [0.000, 1.000) 0.407 (0.184, 0.816) n.a. n.a. n.a. n.a. n.a.

SVM Rating 1 0.238 (0.188, 0.285) 0.302 (0.119, 0.519) 0.230 0.393 0.287 − 3.36 − 23.84
Rating 2 n.a. n.a. n.a. n.a. 1.000 n.a. n.a. n.a. n.a.
Rating 3 0.750 (0.016, 1.000) 0.515 (0.276, 0.729) 0.889 0.626 0.994 18.53 110.17

ANN Rating 1 0.143 (0.095, 0.188) 0.222 (0.053, 0.508) 0.283 0.999 0.754 97.90 27.48
Rating 2 0.545 (0.278, 0.796) 0.494 (0.201, 0.833) 0.375 0.140 0.317 − 31.19 − 24.09
Rating 3 n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a. n.a.

OVS Rating 1 0.077 (0.041, 0.111) 0.202 (0.028, 0.479) 0.182 0.999 0.464 136.36 − 9.90
Rating 2 0.500 (0.232, 0.752) 0.457 (0.184, 0.816) 0.477 0.439 0.426 − 4.60 4.38
Rating 3 1.000 (1.000, 1.000) 0.569 (0.368, 1.000) 1.000 — 0.896 0.00 75.75

WVS Rating 1 0.077 (0.041, 0.111) 0.202 (0.028, 0.479) 0.182 0.999 0.464 136.36 − 9.90
Rating 2 0.500 (0.232, 0.752) 0.457 (0.184, 0.816) 0.477 0.439 0.426 − 4.60 4.38
Rating 3 1.000 (1.000, 1.000) 0.569 (0.368, 1.000) 1.000 — 0.896 0.00 75.75

AWS (s) Rating 1 0.077 (0.041, 0.111) 0.206 (0.028, 0.481) 0.161 0.999 0.370 109.09 − 21.46
Rating 2 0.500 (0.232, 0.752) 0.461 (0.184, 0.816) 0.568 0.666 0.685 − 13.60 23.21
Rating 3 1.000 (1.000, 1.000) 0.581 (0.368, 1.000) 1.000 — 0.955 0.00 72.12

AWS (i) Rating 1 0.077 (0.016, 0.134) 0.205 (0.028, 0.439) 0.161 0.999 0.371 136.36 − 21.46
Rating 2 0.500 (0.372, 0.620) 0.442 (0.184, 0.816) 0.568 0.666 0.721 − 4.60 28.51
Rating 3 1.000 (1.000, 1.000) 0.581 (0.368, 1.000) 1.000 — 0.953 0.00 72.12

*Normal approximation to the binomial distribution (Dwyer, 2007).
Notes: n.a.: ‘not available’. In italics, inconsistent PD estimates (PD second grade higher than PD third grade).
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The DeLong and Friedman tests were applied to verify the
statistically significant differences between AUCs from the
same and distinct samples, respectively. Calibration was based
on two-grade and multiple-grade definitions, and confidence
levels were obtained on the similarity between the predicted
default rates and the real default rates for both the re-substitution
and bootstrapped-based forecasts.
The results on the discriminatory power confirmed the class

imbalance and error specification problems for individual
classifiers in the presence of scarce LDPs: the smaller the data
set, the lower the discriminatory power and the higher the
variance of the predictions. LR and SVM were the most
accurate individual classifiers applied to manage scarce LDPs.
The cooperative approaches obtained higher discriminatory
power than individual models in terms of AUC (Friedman test
p< 0.05). In particular, the correlation-adjusted cooperative
variants produced highly accurate results. The bootstrapping
techniques were found to produce much accurate estimates of
the generalisation error versus that of the pure re-substitution
approaches while maintaining an acceptable balance between
Type-I and Type-II errors, in line with Schuermann and Hanson
(2004). Confidence levels approximately 40–60% of the boot-
strapped error confidence intervals were observed in both data
sets, which confirmed the model stability14 in terms of shorter
standard errors than individual classifiers.
The models were first calibrated using a default versus non-

default rating scale. The PD estimates based on the training
model showed a high distance to the real PD that made it difficult
to define a confidence level for the individual classifiers. The
suggested levels fall within the 95–99.9% interval (German data
set) and 75–99.9% interval (Japanese data set). In contrast, the
bootstrapped approaches produced more highly stretched esti-
mates, with most real PDs in the 50–60% (German data set) and
35–65% (Japanese data set) confidence levels. The cooperative
models produced more stable PD distributions, with confidence
levels in the 99.9% range for any data set (training model) and
tight bootstrapped estimates (particularly for the Japanese data
set with bootstrapped confidence levels around 50%).
Finally, the models were calibrated on a multi-grade rating

scale. Five and three different ratings were defined for the
German and Japanese data sets, respectively, with certain
individual classifiers unable to generate differentiated ratings
for scarce data sets. However, the cooperative models produced
both accurate and well-calibrated ratings with short distances
between the real PD and .632E bootstrapped PD estimates. In
particular, the correlation-adjusted cooperative variants were
found to produce the most stable PD distributions in the
presence of both data sets and obtained the tightest confidence
levels (around 45–70% for intermediate grades).
The results suggest that cooperative models based on

bootstrapped-based confidence levels are promising techniques

for dealing with class imbalance and error specification in the
presence of sparse LDPs, producing marginal but significant
differences in terms of out-of-time discriminatory power
(AUC). The calibration results also suggest the superiority of
the cooperative models in obtaining shorter distances between
the real PD and the predicted bootstrapped PD. As expected, the
ensemble of pseudo-independent models have been able to
represent a larger number of hypotheses, removing individual
errors, and reducing over-fitting; such effects are particularly
enhanced in the smallest sample (25 observations), where
cooperative models visibly outperformed individual classifiers
(AUC measure).
Several limitations and suggestions for further work arise

from this study. First, the results are not representative of the
full LDP problem, which includes very different sizes and PD
scenarios. Instead, we have focused on small data sets with a
moderate imbalance ratio, in line with some post-crisis LDPs.
Consequently, further evidence is needed to obtain a broader
picture of the accuracy and stability of cooperative approaches
for alternative scenarios: models should be tested in highly
imbalanced data sets and compared to undersampling and
oversampling techniques (Brown and Mues, 2012; Marques
et al, 2013); also, evidence should be added to test the potential
increased accuracy of cooperative approaches on samples with
a much reduced number of observations.
Second, it would be of interest to run a search procedure to

find alternative individual models with a higher diversity and
assess the effects on the cooperative models’ performance.
While the addition of models would produce a theoretical
increase of accuracy and stability, it is expected to obtain an
empirical ‘stuck point’ where adding extra classifiers will not
enhance (or even reduce) performance.
Finally, considering the post-crisis nature of small LDPs, the

performance of the cooperative approaches should be analysed
in the presence of corporate scarce LDPs with consideration of
financial information as a primary source for rating companies
(or sovereigns). Further research on more advanced boot-
strapping approaches should be tested (ie, the wild bootstrap
for heteroscedastic residuals and small sample sizes), while
alternative combinatorial strategies may be beneficial in the
search for the most efficient credit-scoring models for
scarce LDPs.
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Table A1 A review of methodological proposals for managing LDPs

Methodology Empirical sample Credit risk
determinants

Remarks and drawbacks Out-of-sample
validation

Löffler et al (2004) Credit-risk-scoring and Bayesian
methodology (prior on external
data sets)

4558 observations expanded to
29 500 by random sampling

Yes (six variables) Accuracy similar to logistic regression.
Training and validating samples on the
same data set

100 random
defaults (PD
backtesting)

Schuermann and
Hanson (2004,
2005)

Duration method (external rating
transition matrices and Markov
chains). Small data sets at grade
level

Standard and Poor’s credit rating
history (50 585 observations)

Not used. External PD
estimates

Bootstrapped intervals tighter than Wald
confidence intervals. Insufficient to
distinguish neighbouring grades with few
default observations

No

Pluto and Tasche
(2005, 2006)

Most prudent estimation based
on binomial distributions.
0.50− 99.9% PD confidence
bounds

Not used Not used. Theoretical
PD distributions

PD scaling in presence of few defaults.
Proposal for updating PD estimates over
time based on accumulated PD frequencies.
No solution for PD confidence interval
selection

No

Forrest (2005) Likelihood functions and ratios,
and expert opinion (prior odds).
PD 95% confidence interval

Artificial sample of 100 observations
(for percentile estimates purposes)

Not used. Theoretical
PD distributions

Multi-grade PD estimates. No unique
PDs are obtained, selection based on
maximising regulatory capital

No

Sabato (2006) Credit-scoring logistic model.
Default data are inferred based on
shock variables

11 646 observations (Polish bank)
and 3383 exposures (Czech bank)

Yes (20 variables) Tested on real-world retail portfolios.
Improved results over expert models and
logistic over actual defaults

No

Benjamin et al
(2006)

Mapping based on look-up tables
of PD averages provided by
regulators. 50–75% PD
confidence intervals

Artificial sample of 500 obligors
(7 rating grades)

Not used. A priori PD
tables

Proposal for updating PD estimates over
time based on accumulated look-up tables

No

Dwyer (2007) Bayesian methodology (numerical
integration, Monte Carlo)

Artificial (1000–50 000 observations) Not used. Theoretical
PD distributions

Proposal for PD calibration under shocks No

Kiefer (2009) Bayesian methodology and expert
opinion. 95% PD confidence level

Artificial samples (100–300
observations)

Not used. Theoretical
PD distributions

No out-of-sample validation No

Van der Burgt
(2008)

Calibration model based on ROC
curve

Artificial samples (1700 and 4100
observations). Sovereigns (86 countries)

Not used. Mathematical
estimates of ROC curve

PD estimated from AUC values.
Values within the 95% confidence
levels around real PD for artificial portfolios

Just artificial
portfolios
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Appendix B

Table B1 Discriminatory power results (re-substitution and bootstrapped estimates)

German data set Japanese data set

Train Error err Bootstrap error Ê0:632E Train Error err Bootstrap error Ê0:632E

Mean Confid. interval* α= 0.05 Mean Confid. interval α= 0.05 Mean Confid. interval* α= 0.05 Mean Confid. interval α= 0.05

LDA overall error 0.230 (0.159, 0.297) 0.286 (0.209, 0.370) 0.200 (0.064, 0.328) 0.322 (0.183, 0.530)
Type-II error 0.114 (0.050, 0.175) 0.175 (0.091, 0.285) 0.176 (0.025, 0.320) 0.229 (0.065, 0.467)
Type-I error 0.500 (0.345, 0.646) 0.547 (0.407, 0.658) 0.250 [0.000, 0.511) 0.524 (0.092, 0.724)

LR overall error 0.230 (0.159, 0.297) 0.291 (0.214, 0.397) 0.200 (0.064, 0.328) 0.318 (0.175, 0.503)
Type-II error 0.100 (0.039, 0.157) 0.165 (0.085, 0.304) 0.118 [0.000, 0.239) 0.212 (0.043, 0.511)
Type-I error 0.533 (0.379, 0.678) 0.583 (0.433, 0.670) 0.375 (0.085, 0.648) 0.536 (0.138, 0.770)

k-nn overall error 0.180 (0.115, 0.241) 0.287 (0.214, 0.373) 0.280 (0.128, 0.423) 0.348 (0.200, 0.513)
Type-II error 0.071 (0.019, 0.120) 0.175 (0.063, 0.294) 0.235 (0.066, 0.394) 0.254 (0.087, 0.466)
Type-I error 0.433 (0.280, 0.577) 0.552 (0.382, 0.753) 0.375 (0.085, 0.648) 0.533 (0.138, 0.770)

SVM overall error 0.210 (0.141, 0.274) 0.276 (0.202, 0.342) 0.240 (0.095, 0.376) 0.319 (0.179, 0.476)
Type-II error 0.071 (0.019, 0.120) 0.133 (0.038, 0.238) 0.059 [0.000, 0.148) 0.095 (0.022, 0.393)
Type-I error 0.533 (0.379, 0.678) 0.607 (0.449, 0.778) 0.625 (0.315, 0.917) 0.790 (0.546, 0.862)

ANN overall error 0.277 (0.201, 0.348) 0.320 (0.242, 0.420) 0.200 (0.064, 0.328) 0.332 (0.200, 0.512)
Type-II error 0.160 (0.086, 0.230) 0.202 (0.095, 0.325) 0.176 (0.025, 0.320) 0.208 (0.065, 0.444)
Type-I error 0.563 (0.410, 0.707) 0.617 (0.428, 0.527) 0.250 [0.000, 0.511) 0.578 (0.163, 0.724)

OVS overall error 0.190 (0.124, 0.253) 0.271 (0.193, 0.340) 0.160 (0.036, 0.277) 0.297 (0.149, 0.488)
Type-II error 0.057 (0.010, 0.101) 0.143 (0.058, 0.264) 0.118 [0.000, 0.243) 0.208 (0.043, 0.503)
Type-I error 0.500 (0.345, 0.646) 0.568 (0.428, 0.680) 0.250 [0.000, 0.511) 0.500 (0.092, 0.724)

WVS overall error 0.190 (0.124, 0.253) 0.270 (0.186, 0.352) 0.200 (0.064, 0.328) 0.312 (0.164, 0.503)
Type -II error 0.057 (0.010, 0.101) 0.143 (0.062, 0.282) 0.176 (0.019, 0.323) 0.230 (0.065, 0.525)
Type-I error 0.500 (0.345, 0.646) 0.568 (0.428, 0.680) 0.250 [0.000, 0.511) 0.500 (0.092, 0.724)

AWS (s) overall error 0.190 (0.124, 0.253) 0.271 (0.186, 0.352) 0.200 (0.064, 0.328) 0.313 (0.164, 0.511)
Type-II error 0.057 (0.010, 0.101) 0.151 (0.062, 0.282) 0.118 [0.000, 0.243) 0.208 (0.043, 0.503)
Type-I error 0.500 (0.345, 0.646) 0.552 (0.411, 0.677) 0.375 (0.085, 0.648) 0.546 (0.138, 0.770)

AWS (i) overall error 0.190 (0.124, 0.253) 0.269 (0.149, 0.553) 0.200 (0.064, 0.328) 0.315 (0.138, 0.770)
Type-II error 0.057 (0.010, 0.101) 0.193 (0.062, 0.416) 0.118 [0.000, 0.243) 0.208 (0.043, 0.503)
Type-I error 0.500 (0.345, 0.646) 0.340 (0.273, 0.678) 0.375 (0.085, 0.648) 0.546 (0.164, 0.511)

Normal approximation to the binomial distribution (Dwyer, 2007).
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Appendix C

Table C1 Calibration of data sets (default model)

Train PD (PR) Bootstrapped PD (PR) Generalisation PD (Validation set)

Mean Confid. interval*
α= 0.05

Mean Confid. interval
α= 0.05

Real
PD (DR)

Confid. level
train (1−α)

Confid. level
.632E (1−α)

DR versus PR
distance (train)

(%)

DR versus PR
distance (.632E)
(%)

German data set
LDA Non-default 0.195 (0.171, 0.217) 0.220 (0.149, 0.282) 0.225 0.984 0.488 15.38 2.27
Default 0.652 (0.450, 0.842) 0.538 (0.404, 0.698) 0.529 0.151 0.498 −18.87 −1.67
LR Non-default 0.203 (0.179, 0.225) 0.222 (0.152, 0.288) 0.226 0.949 0.546 11.33 1.80
Default 0.667 (0.453, 0.868) 0.543 (0.403, 0.701) 0.530 0.138 0.398 −20.54 −2.39
k-nn Non-default 0.167 (0.145, 0.187) 0.226 (0.150, 0.293) 0.230 1.000 0.534 37.72 1.77
Default 0.773 (0.548, 0.984) 0.538 (0.363, 0.735) 0.518 0.027 0.440 −32.99 −3.72
SVM Non-default 0.198 (0.175, 0.220) 0.228 (0.152, 0.288) 0.232 0.993 0.513 17.17 1.75
Default 0.737 (0.501, 0.959) 0.572 (0.429, 0.745) 0.552 0.092 0.425 −25.10 −3.50
ANN Non-default 0.195 (0.172, 0.217) 0.224 (0.161, 0.279) 0.237 0.999 0.620 21.54 5.80
Default 0.778 (0.529, 1.000) 0.539 (0.429, 0.644) 0.566 0.075 0.595 −27.25 5.01
OVS Non-default 0.185 (0.163, 0.206) 0.219 (0.138, 0.276) 0.238 0.999 0.711 28.65 8.68
Default 0.789 (0.545, 1.000) 0.593 (0.427, 0.728) 0.538 0.041 0.192 −31.81 −9.27
WVS Non-default 0.185 (0.163, 0.206) 0.219 (0.138, 0.276) 0.238 0.999 0.711 28.65 8.68
Default 0.789 (0.545, 1.000) 0.593 (0.427, 0.728) 0.538 0.041 0.192 −31.81 −9.27
AWS (s) Non-def. 0.185 (0.163, 0.206) 0.216 (0.138, 0.276) 0.238 0.999 0.712 −28.65 10.19
Default 0.789 (0.545, 1.000) 0.593 (0.427,0.744) 0.538 0.041 0.454 −31.81 −9.27
AWS (i) Non-def. 0.177 (0.155, 0.198) 0.216 (0.135, 0.272) 0.234 0.999 0.691 32.22 8.33
Default 0.762 (0.539, 0.972) 0.583 (0.409, 0.744) 0.535 0.042 0.291 −29.79 −8.23
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Table C1: Continued

Train PD (PR) Bootstrapped PD (PR) Generalisation PD (Validation set)

Mean Confid. interval*
α= 0.05

Mean Confid. interval
α= 0.05

Real
PD (DR)

Confid. level
train (1−α)

Confid. level
.632E (1−α)

DR versus PR
distance (train)

(%)

DR versus PR
distance (.632E)
(%)

Japanese data set
LDA Non-default 0.125 (0.083, 0.164) 0.232 (0.046, 0.465) 0.270 0.999 0.679 116.00 16.38
Default 0.667 (0.341, 0.974) 0.497 (0.245, 0.877) 0.405 0.087 0.439 − 39.28 − 18.51
LR Non-default 0.167 (0.122, 0.210) 0.250 (0.041, 0.480) 0.230 0.991 0.443 37.72 − 8.00
Default 0.714 (0.331, 1.000) 0.510 (0.263, 0.895) 0.500 0.172 0.609 − 29.97 − 1.96
k-nn Non-default 0.304 (0.250, 0.355) 0.300 (0.112, 0.463) 0.327 0.765 0.656 7.57 9.00
Default 0.500 (0.000, 1.000) 0.407 (0.184, 0.816) n.a. n.a. n.a. n.a. n.a.
SVM Non-default 0.238 (0.188, 0.285) 0.296 (0.178, 0.438) 0.256 0.729 0.340 7.56 − 13.51
Default 0.750 (0.231, 1.000) 0.479 (0.276, 0.908) 0.900 0.688 0.902 20.00 87.89
ANN Non-default 0.238 (0.188, 0.285) 0.284 (0.088, 0.444) 0.236 0.473 0.274 − 0.84 − 16.90
Default 0.750 (0.231, 1.000) 0.457 (0.276, 0.716) 0.536 0.242 0.669 − 28.53 17.29
OVS Non-default 0.118 (0.079, 0.155) 0.227 (0.043, 0.410) 0.236 0.999 0.579 100.00 3.96
Default 0.750 (0.383, 1.000) 0.520 (0.276, 0.908) 0.536 0.274 0.541 − 28.53 3.08
WVS Non-default 0.125 (0.083, 0.164) 0.228 (0.046, 0.413) 0.236 0.999 0.577 88.80 3.51
Default 0.667 (0.341, 0.974) 0.488 (0.245, 0.877) 0.536 0.248 0.553 − 19.64 9.84
AWS (s) Non-def. 0.167 (0.122, 0.210) 0.245 (0.061, 0.428) 0.230 0.999 0.499 37.72 − 6.12
Default 0.714 (0.331, 1.000) 0.507 (0.263, 0.895) 0.577 0.272 0.537 − 19.19 13.81
AWS (i) Non-def. 0.167 (0.122, 0.210) 0.230 (0.061, 0.480) 0.230 0.999 0.499 37.72 − 6.88
Default 0.714 (0.331, 1.000) 0.577 (0.263, 0.895) 0.577 0.272 0.537 − 19.19 12.04

Normal approximation to the binomial distribution (Dwyer, 2007).
Note: n.a.: ‘not available’.
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